# linear algebra done right undergraduate texts in mathematics

**Download Book Linear Algebra Done Right Undergraduate Texts In Mathematics in PDF format. You can Read Online Linear Algebra Done Right Undergraduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## Linear Algebra Done Right

**Author :**Sheldon Axler

**ISBN :**9783319110806

**Genre :**Mathematics

**File Size :**65. 19 MB

**Format :**PDF, ePub, Docs

**Download :**967

**Read :**882

This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.

## Linear Algebra Done Right

**Author :**Sheldon Axler

**ISBN :**0387982590

**Genre :**Mathematics

**File Size :**59. 29 MB

**Format :**PDF, Kindle

**Download :**454

**Read :**533

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

## Linear Algebra Done Right

**Author :**Sheldon Jay Axler

**ISBN :**9780387225951

**Genre :**Mathematics

**File Size :**21. 87 MB

**Format :**PDF, ePub, Docs

**Download :**636

**Read :**747

This text for a second course in linear algebra is aimed at math majors and graduate students. The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite-dimensional spectral theorem. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.

## Advanced Linear Algebra

**Author :**Steven Roman

**ISBN :**9780387728315

**Genre :**Mathematics

**File Size :**58. 57 MB

**Format :**PDF, Kindle

**Download :**106

**Read :**1101

This graduate level textbook covers an especially broad range of topics. The book first offers a careful discussion of the basics of linear algebra. It then proceeds to a discussion of modules, emphasizing a comparison with vector spaces, and presents a thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory, culminating in the finite dimensional spectral theorem for normal operators. The new edition has been revised and contains a chapter on the QR decomposition, singular values and pseudoinverses, and a chapter on convexity, separation and positive solutions to linear systems.

## Linear Algebra

**Author :**Charles Curtis

**ISBN :**9780387909929

**Genre :**Mathematics

**File Size :**54. 57 MB

**Format :**PDF, Mobi

**Download :**988

**Read :**607

This revised and updated fourth edition designed for upper division courses in linear algebra includes the basic results on vector spaces over fields, determinants, the theory of a single linear transformation, and inner product spaces. While it does not presuppose an earlier course, many connections between linear algebra and calculus are worked into the discussion. A special feature is the inclusion of sections devoted to applications of linear algebra, which can either be part of a course, or used for independent study, and new to this edition is a section on analytic methods in matrix theory, with applications to Markov chains in probability theory. Proofs of all the main theorems are included, and are presented on an equal footing with methods for solving numerical problems. Worked examples are integrated into almost every section, to bring out the meaning of the theorems, and illustrate techniques for solving problems. Many numerical exercises make use of all the ideas, and develop computational skills, while exercises of a theoretical nature provide opportunities for students to discover for themselves.

## Finite Dimensional Vector Spaces

**Author :**Paul R. Halmos

**ISBN :**0691090955

**Genre :**Mathematics

**File Size :**88. 77 MB

**Format :**PDF, Mobi

**Download :**904

**Read :**850

As a newly minted Ph.D., Paul Halmos came to the Institute for Advanced Study in 1938--even though he did not have a fellowship--to study among the many giants of mathematics who had recently joined the faculty. He eventually became John von Neumann's research assistant, and it was one of von Neumann's inspiring lectures that spurred Halmos to write Finite Dimensional Vector Spaces. The book brought him instant fame as an expositor of mathematics. Finite Dimensional Vector Spaces combines algebra and geometry to discuss the three-dimensional area where vectors can be plotted. The book broke ground as the first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces. The book continues to exert its influence sixty years after publication, as linear algebra is now widely used, not only in mathematics but also in the natural and social sciences, for studying such subjects as weather problems, traffic flow, electronic circuits, and population genetics. In 1983 Halmos received the coveted Steele Prize for exposition from the American Mathematical Society for "his many graduate texts in mathematics dealing with finite dimensional vector spaces, measure theory, ergodic theory, and Hilbert space."

## Linear Algebra

**Author :**Serge Lang

**ISBN :**0387964126

**Genre :**Mathematics

**File Size :**56. 22 MB

**Format :**PDF, ePub, Docs

**Download :**918

**Read :**1114

"Linear Algebra" is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorem for linear maps, including eigenvectors and eigenvalues, quadratic and hermitian forms, diagnolization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants and linear maps. However the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added.